<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 3-3 (Parallel Lines & Triangle Angle Sum Theorem)

Theorem 3-7	Triangle Angle-Sum Theorem	\mathbf{P} C	₽→
	The sum of the measures of \angle 's is 180	1/2	
	Proof:	А	B
	Line $PQ \parallel \overline{AB}$ Given/construction	ucted	
	$\angle A \cong \angle 1$ Thm 3-1		
	$\angle B \cong \angle 3$ Thm 3-1		
	$m \angle 1 + m \angle 3 + m \angle 2 = 180 \qquad \angle \text{Add Post}$		
	$m \angle A + m \angle B + m \angle C = 180$ Subst POE		
	Q.E.D.		
E	Given: $\angle ACB$ is a right angle 70°		
Example (not in book)	$\frac{\overline{CD}}{\overline{CD}} + \frac{\overline{AB}}{\overline{AB}}$		
UUUK)	Find $a, b \& c$.	b	B
	D		_
	c = 90 - 70 = 20 (complementary	$\angle s$)	
	a + c + 90 = 180 (Theorem 3-7) a = 180 - 90 - c = 90 - 20 = 70		
	b + 70 + 90 = 180 (Theorem 3-7)		
	b = 180 - 160 = 20		
Classifying triangles	Need both / and side relationship.		
	Bv / ·		
	• Equiangular: all $\angle s \cong$		
	• Acute: all \angle 's acute		
	• Right: $1 \angle is$ rt \angle		
	• $\overline{\text{Obtuse}}$: 1 \angle obtuse		
	\dots and in combination w/side:		
	• <u>Equilateral</u> : all sides $=$		
	• <u>Isosceles</u> : 2 sides = \sim		
	• <u>Scalene</u> : no sides $=$		
	1		

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 3-3 (Parallel Lines & Triangle Angle Sum Theorem)

Example	Classify:
	<u>Consider sides</u> : none are congruent. <u>Consider $\angle's$</u> : there is 1 obtuse $\frac{5}{4}$ angle.
	obtuse scalene triangle
Exterior \angle 's	\angle formed by side and extension of adjacent side.
Remote interior \angle 's	2 int \angle 's of tri at other vertices. Remote interior angles
Theorem 3-8	<u>Triangle Exterior Angle Theorem</u> Measure ea ext $\angle =$ sum measure 2 remote int $\angle s$ $m\angle 1 = m\angle 2 + m\angle 3$
Example	Problem #28, pg 135
	Find each missing angle measure. $\sqrt[3]{4}$
	$m \angle 3 = 45 + 47 = 92$ (Thm 3-8)
	$m \angle 3 + m \angle 4 = 180$ (Suppl $\angle s$) $m \angle 4 = 180 - m \angle 3 = 180 - 92 = 88$ (Subst POE)
	1